Carnegie Mellon University

From the SelectedWorks of Ole] Mengshoel

December, 2016

Incremental Learning for Matrix Factorization in
Recommender Systems

Ole] Mengshoel

Tong Yu, Carnegie Mellon University
Nimish Radia, Ericsson

Alvin Jude, Ericsson

Eugen Feller, Ericsson, et al.

:s ! a: Available at: https://works.bepress.com/ole_mengshoel/62/

SELECTEDWORKS™

http://www.cmu.edu/
https://works.bepress.com/ole_mengshoel/
https://works.bepress.com/ole_mengshoel/62/

Incremental Learning for Matrix Factorization in
Recommender Systems

Tong Yu, Ole J. Mengshoel
Electrical and Computer Engineering
Carnegie Mellon University
{tong.yu, ole.mengshoel} @sv.cmu.edu

Abstract—Recommender systems play a key role in person-
alizing service experiences by recommending relevant items to
users. One popular technique for producing such personalization
at scale is collaborative filtering via Matrix Factorization (MF).
The essence of MF is to train a model by factorizing a sparse
rating matrix consisting of users’ ratings of item. Unfortunately,
existing MF methods require model Learning from Scratch when
new data (for users, items, or user ratings) arrive. Learning
large models from scratch incurs significant computation cost and
typically also results in stale recommendations. With increasing
amounts of data and a need for real-time recommendations,
incremental learning is desirable. In this paper, we develop
a novel but simple method for incremental learning of MF
models, called One-sided Least Squares, and demonstrate its
parallel implementation via Apache Spark. We also describe
how to integrate it with batch learning via Alternating Least
Squares (ALS). Unlike previous incremental learning methods,
we study our method’s approximation of the results of ALS,
while significantly reducing compute and storage costs. Our
theoretical analysis and experimental results on three real-
world datasets suggest that One-sided Least Squares achieves
prediction accuracy close to Learning from Scratch with ALS
at substantially faster learning speeds. This fast and accurate
method for incremental learning enables improved Web-scale
recommender systems.

Keywords-Incremental Learning; Least Squares; Matrix Fac-
torization; Recommender Systems; Big Data; Spark

I. INTRODUCTION

Recommender systems produce individualized recommen-
dations or guide a user to useful objects in a large space of
possible options in a personalized way [1], thus addressing the
problem of information overload [2]. Reducing information
overload has several positive benefits for consumers and
retailers alike. Amazon’s growth of 29% in 2012 was largely
attributed to recommenders being integrated into the purchas-
ing pipeline [3]; Google News improved Google’s traffic by
38% [4] partly due to recommenders; and Netflix claimed that
75% of movies watched were from their recommendations [5].

The accuracy of a recommender’s model is important as it
affects the user experience [6]. However, user-centric research
in recommender systems revealed other essential factors [7].
One such factor is the response time of the system, defined
as the time elapsed for a user to receive recommendations
after providing input [8]. Faster response time is preferred. A
related factor is the recency effect, where new items (products
and services) tend to sell better [9]. We therefore conclude that

Alvin Jude, Eugen Feller, Julien Forgeat, Nimish Radia

Ericsson Silicon Valley

{alvin.jude.hari.haran, eugen.feller} @ericsson.com

{julien.forgeat, nimish.radia} @ericsson.com

successful recommender systems should have these features:
(1) new users should promptly get relevant recommendations;
(2) new items should quickly be recommended to current
users; (3) newly rated existing items should immediately yield
improved recommendations for a current user.

A popular approach to building recommender systems is to
use collaborative filtering techniques, often realized through
Matrix Factorization (MF) methods. MF often achieves supe-
rior rating prediction accuracy [10] but has one big drawback:
the high cost of model-building [11]. Adding new information
to the matrix—such as a new item, a new user, or a new user-
item rating—requires the entire MF model to be learned from
scratch. The rapid change in users and items commonly found
in global Web deployments, along with the high cost of MF
model-building, undermines the three features of successful
recommender systems mentioned above.

In this paper, we propose a novel MF machine learning
method for decreasing the response time while maintaining
recommender accuracy. We achieve this by incrementally up-
dating the MF model on the arrival of either a new user, a new
item, or a new rating from an existing user to an existing item.
Our method is derived from Alternating Least Squares (ALS)
[12] and maintains its benefits such as prediction accuracy and
scalability. Meanwhile, it complements ALS in handling new
data. Our main contributions are:

¢ A novel incremental learning method for MF, called One-
sided Least Squares (One-sided LS). We show how One-
sided LS can be integrated with ALS in practice.

o Theoretical analysis and experimental results suggest-
ing that One-sided LS provides accuracy near-equal to
Learning from Scratch with ALS, at much faster learning
speeds. Our method also compares advantageously to
other incremental learning methods for MF.

o A parallel variant of One-sided LS via an implementation
using Apache Spark [13], a prominent distributed data
processing framework.

II. THE MATRIX FACTORIZATION PROBLEM

MF is a classical approach to collaborative filtering. In this
section, we discuss both the MF problem and its incremental
variant.

R e Rim+Dxn PT ¢ Rim+1)xk

1 i
2 pg Q e Rkxn

T
3 3

S I O R PR an)
m+1 Pt
1 2 3 4 -+ n

a Incremental MF via traditional Two-sided LS.

Re R(m+1)xn PT ¢ Rm+1)xk

1 i
2 pL Q e Rkxn
3 3
. ~ . [@ @ a qn)
m o
m+1 PTTnH

1 2 3 4 -+ n
b Incremental MF via proposed One-sided LS.

Fig. 1: Two incremental MF methods. The new ratings from new user w,,4; are signified by the green dots in R. In the
traditional Two-sided LS approach shown in (a), this requires an update of the user’s latent vectors in p,,+; and of item latent
vectors q1, g3 and q4 as marked in red. If users u; and us have previously rated the first item, their respective latent vectors
p1 and po (marked as blue) and related ratings 711, 713, 714, 721, 723, and ro4 need to be accessed in-memory to update q;,
qs3, and g4. In contrast, One-sided LS only requires an update of the user’s latent vector p,,+1, as shown in (b).

A. Traditional MF for Recommender Systems

Definition 2.1: (Matrix factorization (MF) model) In MF,
matrices R € R™*", P € R™** and Q € R¥*" represent
users’ ratings to items, users’ latent vectors and items’ latent
vectors respectively. The entry in the u-th row and the v-th
column of R, that is, r,,, is the rating user u gives item v.
The u-th row vector p,, of P and v-th column vector g, of @)
are user v and item ov’s latent vectors respectively.

Definition 2.2: (Matrix factorization (MF) problem) In the
MF model, some r,, are known while others are not. Based
on known 7, ,,, our goal is to factorize R into P and @), under
the constraint that R = PQ should approximate R well. Let
Ap € R and Ag € R be regularization parameters. In general,
the MF problem to optimize

. _ 2 2 2
rlgl’gl((X):ER(M,U Putv)” + Ap [pull” + Ag ll@[”)- (D

Matrices P and Q) are usually randomly initialized, and
optimization methods are then applied to compute P and Q.

B. The Problem of Incremental Learning in MF

The traditional MF model assumes that the number of users
m and items n are known and fixed in learning and prediction.
However, in most real-world recommender systems, new users
{Um+1, Umt2, -+ } and items {vy 41, Vp42, -} arrive incre-
mentally. In these cases, the traditional MF model can not
incrementally update the latent vectors {pu,, .;Pu, 2s" "}
and {qy, .., v, } for these new users and items, because
they are not contained in the original models.

Definition 2.3: (Incremental MF model) Let new users
{Um—+1,Umt2, -} and items {v, 41, V12, -} arrive incre-
mentally. Incremental learning of an MF model is to learn
latent vectors P and (Q for these new users and items, to
provide good recommendations for them.

Note that which parts of P and @ are updated vary between
different incremental methods, as discussed in the remainder of
this work. An incremental MF method with low computational
cost but high accuracy is preferred.

III. RELATED WORK

There are several methods of performing the Matrix Factor-
ization in Equation 1: Singular Value Decomposition (SVD),
Stochastic Gradient Descent (SGD), and ALS [10], [12].

SVD is a traditional matrix decomposition method. Recom-
mender systems usually contain sparse data, which typically
can be handled better by SGD and ALS than by SVD [10].
SGD and ALS optimize p,, and g, in an alternating manner.
First, they fix all ¢ as constant and optimize p. SGD uses
gradient information to find p in an iterative way, while ALS
computes a closed-form solution. Then they fix all p and obtain
q similarly. The algorithms repeat and terminate when all p and
g no longer change substantially. ALS, which is also referred
as Two-sided LS in this paper, is described in Algorithm 1.
When new data arrives, we can add this to the existing data
and use Two-sided LS to learn an MF model from the full
dataset. We call this Learning from Scratch.

Algorithm 1: Traditional ALS for MF, also referred to as
Two-sided LS in this paper.

Data: Training data D contains user u € N*, item
v € NT and rating 7y, € R.

Input : The dimension of latent vector k € NT,
randomly initialized p, € RF*! and ¢, € RF*!,
number of user m € NT, and number of item
n € NT,

Result: Latent vector p,, for users and g, for items.

while the result does not converge do

for u < 1 to m do

L Pu = (ZT’METM qvqg + Alk)_l Zruveru* Tuv Qv
for uw < 1 to n do

| o=, cr, Pubi + M) D, TunPu

Brand [14] studied how to update MF via Singular Value
Decomposition (SVD) in an online fashion, though SVD can
not handle sparse data well [10]. Incremental update of the
MF model by SGD has been studied [15], [16], [17]. Although
these incremental learning methods seem promising, there are

some potential issues. First, the learning rate of incremental
SGD needs to be carefully tuned. Second, the number of
iterations of SGD is difficult to predetermine, as it depends on
how the latent vector is initialized. Updating until convergence
is a possible solution, but it could lead to an extremely high
number of iterations. This in turn leads to high response time
and poor interactivity. Other incremental learning methods
emphasize different aspects. Agarwal et al. [18] study offline
initialization of the problem. Wang et al. [19] focus on online
multi-task collaborative filtering. In contrast, we focus on ap-
proximation of a classical MF method [10], with significantly
lower computational and storage costs, and easy parallelization
in big data scenarios.

IV. ONE-SIDED METHODS

In this section, we introduce two One-sided methods: One-
sided LS and One-sided SGD. One-sided LS is often preferred
due to its several advantages over One-sided SGD, discussed
in detail in this section. A theoretical upper bound shows that
One-sided LS enjoys very similar expected loss to Two-sided
LS, under certain conditions. We also discuss how One-sided
LS can be integrated with Two-sided LS, enabling Web-scale
recommender systems.

A. Motivations of One-sided LS

ALS can possibly overcome the issues in incremental learn-
ing by SGD as discussed in Section III. First, it is free of
learning rate. Second, in each round of learning alternately,
when we fix One-sided latent vectors, the problem is convex.
Two-sided LS computes closed form solutions, so that in each
round of learning only one iteration is needed and the results
are independent of the latent vector initialization.

However, there are also some potential issues when making
Two-sided LS incremental, which are not well studied in
previous work, as detailed below.

First, when the latent vectors for some items are updated, all
the users’ latent vectors and ratings of these items are required
from the previous dataset (i.e., before incremental learning
by Two-sided LS). For example, in Figure la, new ratings to
items vy, vs, and vy are given by a new user U,,+i. As a
result, vectors p,,+1, q1, g3, and g4 need to be updated. In
addition, if vy, vs3 and v4 was rated by user u; and us before,
P1, P2, T11, T13, T14, T21, T23, and 794 need to be accessed in
order to update q;, g3 and g4. Thus, previous data may need
to be stored and accessed for Two-sided LS, adding storage
and computation cost.

The second problem is that Two-sided LS needs to re-
calculate the latent vectors for some users and items that
are irrelevant to the incrementally added new users. This
is an unnecessary computation cost. The updating operation
of py (X er, @y + M) Tup@y has a
complexity of O(n,, k2 +k3), where n,, is the number of items
rated by user v and k is the dimensionality of latent vectors.
In a real situation, n, might be much larger than k. In this
case the algorithm’s computational bottleneck is updating the
latent vectors of the user with the largest number of ratings.

For example, suppose that a new user u,,11 has 5 ratings and
an old user u; has 50000 ratings. Then Two-sided LS uses

50900 — 10000 times more computations than strictly needed.

B. One-sided LS

Algorithm 2: One-sided LS for incremental updates of
user latent vectors p,, in MF.

Input : Training data D with triples (u, v, ry,)
representing user u’s rating 1, to item v. User u
is new and item v is old. Item v has latent vector
¢y, With dimension k. Number of new users m.
Result: Latent vector p,, for new user u. u € [1,m)]

for u < 1 to m do

L Du = (ereru* qqu +)‘I’C)_l Erweru* Tuv Qo

To mitigate the problems discussed in Section IV-A, when a
new user arrives, latent vectors for items may be fixed, so that
only this particular user’s latent vectors need to be updated
in incremental learning. This is described in Algorithm 2,
named as One-sided LS. We name ALS as Two-sided LS,
as it involves updating by LS on two sides: user and item.
One-sided LS has three potential advantages over Two-sided
LS in incremental learning of an MF model.

First, One-sided LS can efficiently reduce computation, disk
and memory costs. ,An example in Figure 1b shows how costs
are saved with our approach, compared with Two-sided LS.
When a new user u,,,+1 adds ratings for items vy, vs and vy,
only p,,+1 needs to be updated. This avoids the computation
of q1, g2 and g3 required in the traditional Two-sided approach
in Figure la. Besides, we conserve the memory required for
D1, P2, T11, T13, T14, T21, T23, and 7o4.

Second, compared to Learning from Scratch, One-sided LS
also early and efficiently reduces the learning time. Here is a
detailed analysis. Let us assume that the number of iterations
of the outer loop is T},,4; in Learning from Scratch, and define
N, as the number of ratings of the user u; who rates the
most in the previous dataset. If a new user w,,+;1 rates N,
items, the computation cost ratio between incremental learning
with One-sided LS and Learning from Scratch with Two-sided
LS (with a good parallelization) will be upper bounded by
% where typically N, 11 < V.

Third, for One-sided LS it is easier to parallelize the update
for multiple new users. When we update the latent vectors of
user u, we do not need to access other users’ latent vectors.
However, the parallel implementation of traditional ALS (e.g.,
Spark MLIib) would face this issue. With this advantage, we
can update the model faster compared to traditional ALS, as
seen in our experiments.

C. One-sided SGD

When using SGD to solve the MF problem, we distinguish
between Two-sided SGD and One-side SGD, according to
whether the one-sided latent vector is fixed or not. Traditional
SGD [16] is called Two-sided SGD in the rest of our paper and

Notation | Meaning

(Pp, Rp) |latent vectors and ratings of Previous users
(Pn, Rn) |latent vectors and ratings of New users
(PB,Rp) |(Pp, Rp) U (PN, RN)

m # ratings by previous users (the size of Rp)
n # ratings by new users (the size of Ry)

h a possible hypothesis (regression model)
Lp(h) empirical loss of h on (Pg, Rp)

Lp(h) empirical loss of h on (Pp, Rp)

Ln(h) empirical loss of h on (Py, Rn)

Lg(h) expected loss of h on (Pg, Rp)

Lp(h) expected loss of h on (Pp, Rp)

Ly (h) expected loss of h on (Pn, Ry)

M upper bound of the loss function

TABLE 1. For learning the latent vector q,, of an item vj,
the notations used in theoretical analysis in Section IV-D.

used to benchmark our other approaches. In Two-sided SGD,
the latent vectors of users and items are updated by SGD in an
alternating way (similar to Two-sided LS). If instead the one-
sided latent vector is fixed, we have One-sided SGD, which
to our knowledge has not been studied before.

Compared to One-sided SGD, One-sided LS may have
several advantages: (i) Initialization of the latent vectors is
less important, as the closed form solution in One-sided LS
is independent of initialization. In contrast, the initialization
impacts the convergence of One-sided SGD. (ii) The learning
rate of One-sided SGD needs to be carefully selected to obtain
good results. Due to the closed form solution in One-sided LS
we do not need to have this concern.

D. Expected Loss of One-sided LS

Given a rating 7., of user u to item v, when One-sided LS
updates the latent vector p, for this new user u, it assumes
that the updating procedure for item v’s latent vector g,
converges if there are enough previous users ratings of v. In
this section, we analyze for One-sided LS and Two-sided LS
(i) the connection between the number of previous user ratings
for item v and (ii) the difference in expected loss. The notation
used is summarized in Table 1.

For item wvj;, let Py and Ry be the latent vectors and
ratings for the new users. Similarly, let Pp and Rp be the
latent vectors and ratings for the previous users. We assume
that the new users’ data (Py,Ry) and the previous users’
data (Pp, Rp) are sampled i.i.d. from the same distribution.
To predict the ratings of new users to item v;, we train a
regression model, where the input is Py and the output is
Ry . The regression model is exactly the latent vector @,; in
the MF model. First we introduce Lemma 4.1, which follows
from Hoeffding’s inequality. Then we prove Theorem 4.2.

Lemma 4.1: Consider a least squares regression problem
with input space P and output space R. There is a regression!
function f : P — R. Assume that (p1,71), - , (Dm, m) are
data sampled i.i.d. from an unknown distribution D. The loss
function is defined as ¢(r,#) = (r — #)?, the empirical loss
is defined as L(h) = LS €(h(p;),r;) and the expected
loss is defined as L(h) = E,p[¢(h(p), f(p))]. Assume that

IFor the item vj, the corresponding latent vector gy; is the parameter of
the regression model here.

the hypothesis set H is finite in the least square regression
problem. Then, for any § > 0, with probability at least 1 — 6,
the following inequality holds for all h € H:

. log |[H| + log 2
— < _
|z = Eo] < 2 ==0

Proof: Following Hoeffding’s inequality and the proof in
[20], we easily have, with probability 1 — §,

HL(h) - ﬁ(h)H < M\/W.)

|

Lemma 4.1 indicates that the difference between the ex-
pected loss L(h) on new users’ data (e.g., (Pn,Ry)) and
empirical loss L(h) on previous users’ data (e.g., (Pp, Rp))
is well bounded, if there are enough ratings from previous
users. Let Pp and Rp be the latent vectors and ratings for
both previous users and new users to item v;. In the following
Theorem, we aim to show that the expected loss Lg(h) on
(Pp, Rp) and the expected loss Ly (h) on (Py, Ry) is well
bounded, if there are enough ratings from previous users in
(Pg, Rp). That is, if the number of ratings in (Pg, Rp) is
large enough, the latent vector (),, can be fixed, which leads
to our One-sided LS.

Theorem 4.2: In an MF model P,(Q (see Definition 2.1),
suppose for a particular item v; the latent vectors of users who
rate v; are sampled i.i.d. from the same unknown distribution.
Assume before incremental date arrives that v; was rated by
m users, and that the latent vector Qu; of v; was obtained
by least squares based on those m users. Now we have n
new users rating item v;. Assume that Lp(h) is the expected
loss of least squares when fitting m data points (Pp, Rp),
and Lp(h) is the expected loss of least squares fitting m + n
samples (Pp, Rp). When m is big enough, with probability
at least (1 —)3, the following inequality holds for all h € H:

log |H| + log 2
ILg(h) — Lp(h)| SgMH%. 3)

Proof: According to the triangle inequality, we have
ILs(h) — Lp(h)|
< |£sm) = Lp() + Lot - Lo
+ HﬁB(h) —ﬁp(h)H)
< |[zs®) - Lo + Lot ~ Lo
+||Lo(r) — Lo
According to (2), with probability 1 — § we have

10g|H|+10g%

s o] < g,

)

where m +n is the amount of training data (Pp, Rp). Again,
using (2), with probability 1 — § we have

log |H| + log 2 6)

HLP(h) B 2m

lA/P(h)H < M

If we consider the first m samples as training data and the
additional n samples as validation data, with probability 1—4,

log |H| + log 2 %
2m)

Ly(k) = L(h)|| <

According to the definition of empirical loss We also have

. mLp(h) +nLy(h)

Lp(h) = n ;
mi nh Lp(h ®)
Fn(h) = (m+n) B(n)_m p(h)

m+n

According to (7), (8), and since > 1, we have

2m '

Lp(h) = Lp(h)|| < M

When the left hand side of (9) is well bounded and m is
big enough, approximately Lp(h) ~ Lp(h).

When h* = argminy Lp(h), we prove that h* =
arg miny, L Lp(h) by contradiction. If there exits h that
Lp(h) < L B(), then there exits / such that

Lp(h) ~ Ly(h) < Lp(h) ~ Lp(h), (10)
which contradicts h* = argminy, Lp(h). Therefore we have
h* = argminy, Lp(h). It means that when m is big enough,
the optimal hypothesis h* for the previous dataset (Pp, Rp)
with size m, and the optimal hypothesis h* for the dataset
(Pp, Rp) containing both previous data (Pp, Rp) and added
new data (Py, Ry) are the same.

With probability 1 — §, we have (5), (6) and (9). By
substituting (5), (6) and (9) into (4), with probability (1 —4)3,

ILB(h) — Lp(h)|
2 2
< M log [H| + log § o log |H| + log 5
2(m+n) 2m (11)
< 30 10g|H|+10g%
2m
|

In (11), M’s scale is usually very similar to the scale of the
ratings in the regression problem. The bound in (11) is similar
to the bound of the difference between the expected loss and
the empirical loss of the least square regression model in (2),
except a constant ratio of 3. Consider an MF model with new
users’ ratings of previous items, if the previous items are rated
by enough previous users, the difference between the expected
losses of One-sided LS and Two-sided LS is well bounded.

E. Incremental Learning Example

We illustrate the difference between fixing latent vectors
(One-sided LS) and updating latent vectors (Two-sided LS) in
a simple example with dimension of latent vector k = 1. The
synthetic data is sampled i.i.d. from a distribution. Figure 2
(a)(c)(e) show an example with a small amount of previous
data (blue triangles) before incremental learning. In contrast,
Figure 2 (b)(d)(f) show an example with a larger amount of
previous data (blue triangles). In (a), the blue triangles and
line show the initial data and line fitted by least squares. In
(c), some new data (red dots) arrives. In (e), the blue line fits
to previous blue triangles and the magenta line fits to both
blue triangles and red dots. (b)(d)(f) show the same procedure
as (a)(c)(e), except that the number of initial data points is
larger. We can observe a much smaller difference between the
blue line and the magenta line in (f) compared to in (e). This
example illustrates that if the latent vectors in MF are learned
on a reasonably large amount of data, they can be fixed even
if new data is available.

E. Towards Large-scale Recommender Systems

In practice, One-sided LS needs to be integrated with Two-
sided LS for two reasons. First, one input to One-sided LS
is an MF model learned on previous data, typically done by
Two-sided LS. Second, Theorem 4.2 assumes that previous
users’ and new users’ ratings of items are sampled i.i.d. from
the same distribution. This is reasonable when the previous
training data size is large enough and the distribution of new
data is similar to that of previous data. After a period of time,
however, the i.i.d. assumption may not continue to hold. In
this case, we need to train a new MF model on the whole
dataset, or a recent subset thereof, by Two-sided LS.

Algorithm 3, which we call Integrated LS, shows how to
integrate Two-sided LS and One-sided LS. First, we train an
MF model by Two-sided LS on the current dataset. In the event
of new data arrival, we update p and g using One-sided LS.
When the amount of incremental data reaches some threshold,
we retrain the model using Two-sided LS. Practically, we may
use a validation dataset to predetermine this threshold. This
Integrated LS framework aligns with the Netflix Architecture
[21]. However, we are not aware of any empirical results for
the Netflix Architecture. In contrast, we validate our method
via experiments, see Section V.

V. EXPERIMENTS

We performed several experiments to study the efficiency
of our One-sided LS method in terms of prediction accuracy
and learning time.

A. Experimental Setup

We used three different datasets in our experiments: Jester
Dataset 2+ [22], MovieLens 10M, and MovieLens 20M [23].
To simulate incremental learning with these datasets, we first
removed users or items with ratings fewer than some threshold

a Regression on few samples. b Regression on many samples.

¢ Samples added to 2a line. d Samples added to 2b line.

e New and old lines are differ- f New and old lines are very
ent. similar.

Fig. 2: Intuition behind One-sided LS. Left column: With
regression from a small sample, an updated model may change
substantially after samples are added. Right column: When the
model is built from a large sample, adding more samples will
not alter the model much. Theorem 4.2 provides analysis.

T. We set T = 20 in our experiments.> We then partitioned
each dataset by user: 80% of users’ data was used as training
data Dy, and 20% of users’ data as test data D;.. We then
further partitioned each user’s data in Dy., by rating. For each
user or item in the incremental learning, their V;,. ratings
are randomly selected for incremental learning, and the rest
is used for evaluation. The exact value of N, influences the
results, and is discussed as part of the evaluation. The data
after processing is described in Table II.

The experiments were run on a server with 8 processors
and 64 GB memory. We implemented One-sided LS in Apache
Spark [24], to evaluate the execution time in this platform. We
also used Spark MLIib’s implementation of ALS to generate
the original model with P and @, before incremental learning
by One-sided LS, One-sided SGD, Two-sided SGD and several
baselines described in V-B.

Algorithms were evaluated by prediction accuracy and exe-

2The MovieLens 10M and 20M datasets were preprocessed by the provider,
such that all users had rated at least 20 movies. We therefore removed movies
with fewer than 20 ratings. The same preprocessing was applied to the Jester
Data.

Algorithm 3: The Integration of Two-sided LS and One-
sided LS. Prev. is abbreviation for previous.

Input : Training data D with triples (u,v,Tyy)
representing user u’s rating 7, to item v.

Result: Latent vector p for users and ¢ for items.
while the model is kept being updated do
P, Q = Two_sided_LS (D)
while the incremental data is not many enough do
if new user i rates prev. item j as r;; then

p; = One_sided_LS(null, @, r4;);
| P=PUp;; D=DU{(i,j,7i;)}
if prev. user i rates new item j as r;; then

g; = One_sided_LS(P, null, r;;);
L Q=QUq;: D=DU{(i,j,ry)}
if prev. user i rates prev. item j as r;; then
7P " is the prev. rating of item j by user i.*/
Q=Q\gj; P = P\p;;
D = D\{(i, j, TZ‘MU')}§
p; = One_sided_LS(null, @, r4;);
P=PUp;
g; = One_sided_LS(P, null, r;;);
Q=QUaq;: D=DU{(i.j.ry))}

H Adding New Users Adding New Items

20M H

Jester | 10M | Jester | 10M | 20M
Users 26151 69878 138493 59132 69878 138493
Items 140 10677 26744 140 8940 13132
Ratings || 1690525 | 10000054 | 20000263 || 1761439 | 9984502 | 19933089

TABLE II: After removing users or items with fewer than
T = 20 ratings, the experimental datasets have the number of
users, items, and ratings reported here.

cution time spent on incremental learning, measured in wall-
clock time. The metric used to evaluate prediction accuracy

E('u,’U)ED{,g (7'u,v_fu,v)2

is Root Mean Square Error (RMSE),\/ D] s
where r,, ,, is the rating from test data Dy, with |D;.| instances,
and 7, , is the corresponding rating prediction. We calculated
RMSE on each test user’s data and averaged over all RMSEs
of all users, and report average test RMSE. Some users
have 1000 times more ratings than others, and we wanted
to avoid having users with these high numbers of ratings
dominate the evaluation. We were more concerned about the
prediction accuracy under incremental learning, as opposed to
Random Initialization ‘ 5.380(3.807 [3.7775.726|3.714 | 3.556
Random Sampling 6.062|1.335|1.221 || 5.492|1.643 | 3.058

Learning from Scratch || 4.174 | 1.179|1.158 || 4.445|1.171|1.203
One-sided LS 4.277|1.173|1.156 || 4.435 | 1.187 | 1.223

TABLE III: A comparison between our One-sided LS method
and three others in terms of accuracy (in RMSE). One-sided
LS is almost as good as Learning from Scratch, using Two-
sided LS, when adding new users and adding new items.

Adding New Users || Adding New Items
Jester| 10M | 20M || Jester| 10M| 20M

25

19 _— . . .
-#-One-sided LS -%-Two-sided SGD - % -One-sided LS
-©-One-sided SGD-0.01 18 -©--One-sided SGD 8 -+-One-sided SGD-0.001
-©--Two-sided SGD-0.01 L 170 - +-Two-sided SGD-0.001
...... -+ -One-sided SGD-0.001 w7 Pt W
B e -+ -Two-sided SGD-0.001 » ¥ B 18
2| d
E . E 1.6 ¥ E 15
B - B3 @14
R . . 8 1s * &
° O 4 o g 13
g 15 I o 14 . & 12
(o et B [* e
> > P > N
< <13 7 L1 Faag,
R
12 K 1 ‘---.__:‘; --------- e i .l
s~ ook T o
e @ B B I

1
10 15 20 25 30 35 40 45 50 0 0.2 0.4
dimension of latent vector

a Comparison of One-sided LS, One-sided b Comparison of One-sided SGD and Two-
sided SGD. The xz-axis shows the learning
rate for updating the user vector.

SGD and Two-sided SGD. The x-axis
shows the dimension k of the latent vector.

LR for SGD update of movie vector x 10°

0.6 08 1 0'810 15 20 25 30 35 40 45 50
data for incremental learning per user

¢ The effect of number of known ratings

Ninc per new user. The z-axis shows the

number of known ratings per user.

Fig. 3: Comparing SGD methods and One-sided LS on MovieLens 10M. The average test RMSE is shown on the y-axis.

the prediction of the entire test dataset.
B. Accuracy Comparison with ALS

We compared the accuracy of One-sided LS in two sce-
narios: (1) adding new users and (2) adding new items. It is
benchmarked against three existing methods:

« Random Initialization: User’s or item’s latent vectors are

randomly initialized.

o Random Sampling: Latent vectors are randomly selected

from an existing user or item’s latent vector [25].

o Learning from Scratch: Two-sided LS (ALS [10]).
Table III shows that One-sided LS outperforms Random
Initialization and Random Sampling, and performs similar to
Learning from Scratch. The performance of One-sided LS is
independent of the latent vector initialization, as the model is
updated by closed form solution with only one iteration.

C. Accuracy Comparison with SGD

We studied the performance of One and Two-sided SGD,
and One-sided LS on the MovieLens 10M dataset. Three
questions are studied. First, how well One-sided LS can pre-
dict, compared to Two-sided LS and Two-sided SGD. Second,
how SGD’s performance changes with different learning rates.
Third, how One-sided SGD and One-sided LS perform with
varying amount of incremental learning data.

Figure 3(a) shows that SGD is very sensitive to its learning
rate, and that One-sided SGD and One-sided LS are generally
better than Two-sided LS. In Figure 3(b), we fixed the learning
rate for the user vector and gradually increased the learning
rate for the movie vector from 0 to 0.0001. As a result, the
performance gap between One-sided SGD and Two-sided SGD
became larger. In Figure 3(c), we increased N;,., and observed
that the RMSE improves. However, new users usually have few
ratings at the start. So we fix N;,. = 10 for the rest of the
experiment.

One-sided LS and One-sided SGD outperform Two-sided
SGD in our experiments, especially due to Two-sided SGD’s
sensitivity to its learning rate (around 40% decrease of average
test RMSE is seen in Figure 3(a)). If the learning rate of Two-
sided SGD is not carefully tuned, an unfortunate update by
SGD may jeopardize the finely learned model.

150.0
® One-sided LS incremental learning, 1 thread
= Two-sided LS training by MLIib, 8 threads
Two-sided LS training with MLIib, 1 thread ~ 117.4
100.0
w
g
§ 68.7
)
~ 48.4
[
£ 50.0
- 27.6
204
12.0
31 - 3.0 34
0.0
Jester 2+ MovieLens 10M MovielLens 20M

Fig. 4: A comparison of One-sided LS and Learning from
Scratch with Two-sided LS on Spark MLIib using 1 or 8
threads.

21

-%-One-sided LS
T -0 Two-sided LS
N

N

w
%19 \
=
i
7 18 \
O ‘\
L *.
17
jor}
g
$6 >
Z ¥
SR e
15 e —
“ Qe *

10 20 3 40 50 60 70 8 90
rating per movie before incremental learning

Fig. 5: For MovieLens 10M, when the number of previous
ratings for a movie increases, the RMSE gap between One-
sided LS and Two-sided LS decreases.

D. Execution Time Comparison

This section compares the execution time of incremental
learning by One-sided LS in Spark and Learning from Scratch
with ALS in MLIib, when we have one new user. The experi-
ments use Jester Dataset 2+, MovieLens 10M, and MovieLens
20M. Figure 4 shows the results. One-sided LS can integrate
this user into an MF model within 4 seconds. But if we
use Learning from Scratch, the time is much longer, even
with 8 threads. Thus, One-sided LS enables much better user
interactivity. As more data becomes available, the time of Two-
sided LS learning increases from 12.0s for Jester, to 27.6s

for MovieLens 10M, and to 48.4s for MovieLens 20M. In
contrast, for One-sided LS, the time is 3.1s for Jester, 3.0s
for MovieLens 10M, and 3.4s for MovieLens 20M. In One-
sided LS, the updates of user or item latent vectors are totally
independent. Thus the computation times for one new user and
multiple new users are about the same through the parallel
computing techniques discussed in Section IV-A.

E. Varying Amounts of New Data

The theoretical analysis in Section IV-D shows that One-
sided LS can achieve similar accuracy to Two-sided LS, given
enough known ratings in the MF model input to One-sided LS.
This was validated with an experiment, with results illustrated
in Figure 5.

The gap between One-sided LS and Two-sided LS decreases
as the number of ratings increases, and converges at 90.
This suggest that given an item with around 90 ratings, our
approach predicts with similar accuracy to that of Learning
from Scratch and we will not need to update the item’s latent
vector during incremental learning. In fact, 100% of items in
Jester, 57% of items in MovieLens 10M, and 57% of items in
MovieLens 20M have been rated by more than 90 users.

F. Summary

Three key outcomes of our experiments are as follows:

e Our incremental learning approach, One-sided LS,
achieved accuracy very close to a model learned from
scratch on three datasets, with a difference in RMSE
between 0.01 to 0.1.

o Our approach required shorter learning time than Learn-
ing from Scratch. On average, it took 10% of the time
spent by ALS in Spark MLIib with 8 threads.

¢ Our approach outperformed Two-sided SGD on accuracy,
decreasing the RMSE of the MovieLens 10M dataset by
about 40%. Moreover, we achieved similar accuracy to
One-sided SGD, but without the need for a carefully
tuned parameter.

VI. CONCLUSIONS

In this paper, we address the problem of incrementally
learning MF models. Incremental learning is important in
improving Web users’ experience with recommender systems,
as it reduced response time. We develop a novel incremental
learning method, One-sided LS. Both theoretical analysis and
experimental results show that our method achieves very
similar test RMSE to learning MF models from scratch with
ALS, but at much lower learning time. Moreover, our method
does not require complex learning rate tuning as SGD, and
can be parallelized by implementation using Apache Spark.

REFERENCES

[1] R. Burke, “Hybrid recommender systems: Survey and experiments,’
User Modeling and User-Adapted Interaction, vol. 12, no. 4, pp. 331—
370, Nov. 2002.

[2] J. Lu, D. Wu, M. Mao, W. Wang, and G. Zhang, “Recommender system
application developments: A survey,” Decision Support Systems, vol. 74,
pp. 12-32, 2015.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

(25]

J. Mangalindan, “Amazon’s recommendation secret,” http://fortune.com/
2012/07/30/amazons-recommendation-secret/, 2015, accessed: 2015-07-
30.

X. Zhao, W. Zhang, and J. Wang, “Interactive collaborative filtering,” in
Proceedings of the 22nd ACM international conference on Conference
on information & knowledge management. ACM, 2013, pp. 1411-1420.
X. Amatriain and J. Basilico, “Netflix recommendations: Be-
yond the 5 stars — part 1,7 http://techblog.netflix.com/2012/04/
netflix-recommendations-beyond-5-stars.html, 2015.

B. P. Knijnenburg, M. C. Willemsen, Z. Gantner, H. Soncu, and
C. Newell, “Explaining the user experience of recommender systems,”
User Modeling and User-Adapted Interaction, vol. 22, no. 4-5, pp. 441—
504, Oct. 2012.

P. Pu, L. Chen, and R. Hu, “A user-centric evaluation framework for
recommender systems,” in RecSys-2011. ACM, 2011, pp. 157-164.
B. Xiao and I. Benbasat, “E-commerce product recommendation agents:
Use, characteristics, and impact,” Mis Quarterly, vol. 31, no. 1, pp. 137-
209, 2007.

B. Pathak, R. Garfinkel, R. D. Gopal, R. Venkatesan, and F. Yin,
“Empirical analysis of the impact of recommender systems on sales,”
Journal of Management Information Systems, vol. 27, no. 2, pp. 159—
188, 2010.

Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, no. 8, pp. 30-37, 2009.

X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering
techniques,” Advances in artificial intelligence, vol. 2009, p. 4, 2009.
Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan, “Large-scale parallel
collaborative filtering for the netflix prize,” in Algorithmic Aspects in
Information and Management. Springer, 2008, pp. 337-348.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Pro-
ceedings of the 9th USENIX Conference on Networked Systems Design
and Implementation, ser. NSDI'12, 2012.

M. Brand, “Fast online svd revisions for lightweight recommender
systems.” in SDM. SIAM, 2003, pp. 37-46.

S. Rendle and L. Schmidt-Thieme, “Online-updating regularized kernel
matrix factorization models for large-scale recommender systems,” in
RecSys-2008. ACM, 2008, pp. 251-258.

J. Vinagre, A. M. Jorge, and J. Gama, “Fast incremental matrix factoriza-
tion for recommendation with positive-only feedback,” in UMAP-2014.
Springer, 2014, pp. 459—470.

X. Luo, Y. Xia, and Q. Zhu, “Incremental collaborative filtering recom-
mender based on regularized matrix factorization,” Knowledge-Based
Systems, vol. 27, pp. 271-280, 2012.

D. Agarwal, B.-C. Chen, and P. Elango, “Fast online learning through
offline initialization for time-sensitive recommendation,” in KDD-2010.
ACM, 2010, pp. 703-712.

J. Wang, S. C. Hoi, P. Zhao, and Z.-Y. Liu, “Online multi-task collab-
orative filtering for on-the-fly recommender systems,” in RecSys-2013.
ACM, 2013, pp. 237-244.

M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine
learning, 2012.

X. Amatriain, “Big & personal: data and models behind netflix recom-
mendations,” in Proceedings of the 2nd International Workshop on Big
Data, Streams and Heterogeneous Source Mining: Algorithms, Systems,
Programming Models and Applications. ACM, 2013, pp. 1-6.

K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, “Eigentaste: A
constant time collaborative filtering algorithm,” Information Retrieval,
vol. 4, no. 2, pp. 133-151, 2001.

F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” ACM Transactions on Interactive Intelligent Systems (TiiS),
vol. 5, no. 4, p. 19, 2015.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proceedings of the
2Nd USENIX Conference on Hot Topics in Cloud Computing, ser.
HotCloud’10. Berkeley, CA, USA: USENIX Association, 2010, pp.
10-10.

N. N. Liu, X. Meng, C. Liu, and Q. Yang, “Wisdom of the better few:
cold start recommendation via representative based rating elicitation,”
in RecSys-2011. ACM, 2011, pp. 37-44.

	Carnegie Mellon University
	From the SelectedWorks of Ole J Mengshoel
	December, 2016

	Incremental Learning for Matrix Factorization in Recommender Systems
	tmpruV5s_.pdf

