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Cloud Computing

On-demand self-service pay-as-you-go resource provisioning

More and more applications are executed in large data centers
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Infrastructure-as-a-Service (IaaS) Clouds

Provide compute capacity in the form
of Virtual Machines (VMs)

Illusion of a computer running its
own operating system

Server virtualization
Multiple VMs on a server
Live migration

User

Portal

VM 1 VM 2 VM 3 VM 4 VM 6VM 5
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VM management system

Controls the servers

Accepts user requests

Places VMs on the servers
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Challenge: Data Center Management

Server AdditionServer Removal
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Challenge: Data Center Management

Server AdditionServer Removal

Manual management is impossible

Autonomic IaaS cloud management systems are desirable
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Autonomic System Management

How to achieve autonomic system management in IaaS clouds?

Self-configuration
Support for dynamic server addition, removal

Self-healing
Support for automated VM management system services fail-over
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Challenge: Energy Saving

Huge energy amounts in large data centers
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Energy Efficiency

Data centers are rarely fully utilized
High fluctuating resource demands→ Low utilization (10 to 50%)

Servers lack power proportionality
High idle power consumption
Energy efficiency significantly drops under light loads
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Energy Saving Approaches

Slow down the individual server components (e.g. CPU, memory)
Becomes less attractive on modern hardware (Le Sueur et al. (2010))

Transition parts of the server components into a sleep state
Not always easy, as idle time is hard to achieve

Transition entire servers into a sleep state
Entering sleep states can yield significant energy savings
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Idle Time Creation

Three methods
Energy-efficient VM
placement VM1

Server 1 Server 2

VM2

VM3

VM1

Server 1 Server 2

VM2

VM3

VM4
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Idle Time Creation

Three methods
Energy-efficient VM
placement
Server underload detection
and mitigation Server 1
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Idle Time Creation

Three methods
Energy-efficient VM
placement
Server underload detection
and mitigation
Periodic VM consolidation
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Self-optimization for energy efficiency
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Objective

Design and implement an autonomic VM management system for
large-scale IaaS clouds

Ease of management

High availability

Energy efficiency
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Contributions

Snooze: autonomic and energy-efficient VM management system
Self-configuring and self-healing VM management system
Self-optimizing integrated energy management approach

Energy-efficient VM management algorithms
VM placement
VM consolidation
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First Contribution Presented

Self-configuring and self-healing VM management system

Self-optimizing integrated energy management approach
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Existing VM Management Systems

System Architecture Self-configuration Self-healing Evaluation

OpenNebula, OpenStack, Nimbus, Entropy Centralized No No Real system
CloudStack, VMware DRS Centralized No Yes (Repli-

cated servers)
Real system

Eucalyptus Static Hierarchy No No Real system
Rouzaud-Cornabas, J. (2010), DVMS, V-MAN P2P No No Simulator

Snooze Dynamic Hierarchy Yes Yes (No dedi-
cated servers)

Real system
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VM Submission Example
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Hierarchy Construction and Maintenance

How to build the hierarchy?

How to add/remove servers?

How to deal with server failures?

Self-configuration and self-healing mechanisms
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Hierarchy Construction Protocols

Three steps
Group leader election
Group manager join
Local controller join
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Group Leader Election

Group leader election algorithm exploiting Apache ZooKeeper
Scalable and fault-tolerant coordination framework

GM 1

Join
GM 1

GM 1

Join
GL

GM 1

Join
GL

GM2
Join

GM 1

Watchdog

GM 1

Join
GL

GM2
Join

GM 1

Watchdog

Jo
in

G
M

2

GM3Watchdog

GM 1

Join
GL

GM2
Join

GM 1

Watchdog

Jo
in

G
M

2

GM3Watchdog GM4

Jo
in

G
M

3

Watchdog

GM 1

Join
GL

GM2
Join

GM 1

Watchdog

Jo
in

G
M

2

GM3Watchdog GM4

Jo
in

G
M

3

Watchdog

Join

GM n-1
GMn

Watchdog

Eugen Feller (Inria & University of Rennes 1) PhD Thesis Defense December 17, 2012 18 / 50



Group Leader Election

Group leader election algorithm exploiting Apache ZooKeeper
Scalable and fault-tolerant coordination framework

GM 1

Join
GM 1

GM 1

Join
GL

GM 1

Join
GL

GM2
Join

GM 1

Watchdog

GM 1

Join
GL

GM2
Join

GM 1

Watchdog

Jo
in

G
M

2

GM3Watchdog

GM 1

Join
GL

GM2
Join

GM 1

Watchdog

Jo
in

G
M

2

GM3Watchdog GM4

Jo
in

G
M

3

Watchdog

GM 1

Join
GL

GM2
Join

GM 1

Watchdog

Jo
in

G
M

2

GM3Watchdog GM4

Jo
in

G
M

3

Watchdog

Join

GM n-1
GMn

Watchdog

Eugen Feller (Inria & University of Rennes 1) PhD Thesis Defense December 17, 2012 18 / 50



Group Leader Election

Group leader election algorithm exploiting Apache ZooKeeper
Scalable and fault-tolerant coordination framework

GM 1

Join
GM 1

GM 1

Join
GL

GM 1

Join
GL

GM2
Join

GM 1

Watchdog

GM 1

Join
GL

GM2
Join

GM 1

Watchdog

Jo
in

G
M

2

GM3Watchdog

GM 1

Join
GL

GM2
Join

GM 1

Watchdog

Jo
in

G
M

2

GM3Watchdog GM4

Jo
in

G
M

3

Watchdog

GM 1

Join
GL

GM2
Join

GM 1

Watchdog

Jo
in

G
M

2

GM3Watchdog GM4

Jo
in

G
M

3

Watchdog

Join

GM n-1
GMn

Watchdog

Eugen Feller (Inria & University of Rennes 1) PhD Thesis Defense December 17, 2012 18 / 50



Group Leader Election

Group leader election algorithm exploiting Apache ZooKeeper
Scalable and fault-tolerant coordination framework

GM 1

Join
GM 1

GM 1

Join
GL

GM 1

Join
GL

GM2
Join

GM 1

Watchdog

GM 1

Join
GL

GM2
Join

GM 1

Watchdog

Jo
in

G
M

2

GM3Watchdog

GM 1

Join
GL

GM2
Join

GM 1

Watchdog

Jo
in

G
M

2

GM3Watchdog GM4

Jo
in

G
M

3

Watchdog

GM 1

Join
GL

GM2
Join

GM 1

Watchdog

Jo
in

G
M

2

GM3Watchdog GM4

Jo
in

G
M

3

Watchdog

Join

GM n-1
GMn

Watchdog

Eugen Feller (Inria & University of Rennes 1) PhD Thesis Defense December 17, 2012 18 / 50



Group Leader Election

Group leader election algorithm exploiting Apache ZooKeeper
Scalable and fault-tolerant coordination framework

GM 1

Join
GM 1

GM 1

Join
GL

GM 1

Join
GL

GM2
Join

GM 1

Watchdog

GM 1

Join
GL

GM2
Join

GM 1

Watchdog

Jo
in

G
M

2

GM3Watchdog

GM 1

Join
GL

GM2
Join

GM 1

Watchdog

Jo
in

G
M

2

GM3Watchdog GM4

Jo
in

G
M

3

Watchdog

GM 1

Join
GL

GM2
Join

GM 1

Watchdog

Jo
in

G
M

2

GM3Watchdog GM4

Jo
in

G
M

3

Watchdog

Join

GM n-1
GMn

Watchdog

Eugen Feller (Inria & University of Rennes 1) PhD Thesis Defense December 17, 2012 18 / 50



Group Leader Election

Group leader election algorithm exploiting Apache ZooKeeper
Scalable and fault-tolerant coordination framework

GM 1

Join
GM 1

GM 1

Join
GL

GM 1

Join
GL

GM2
Join

GM 1

Watchdog

GM 1

Join
GL

GM2
Join

GM 1

Watchdog

Jo
in

G
M

2

GM3Watchdog

GM 1

Join
GL

GM2
Join

GM 1

Watchdog

Jo
in

G
M

2

GM3Watchdog GM4

Jo
in

G
M

3

Watchdog

GM 1

Join
GL

GM2
Join

GM 1

Watchdog

Jo
in

G
M

2

GM3Watchdog GM4

Jo
in

G
M

3

Watchdog

Join

GM n-1
GMn

Watchdog

Eugen Feller (Inria & University of Rennes 1) PhD Thesis Defense December 17, 2012 18 / 50



Group Leader Election

Group leader election algorithm exploiting Apache ZooKeeper
Scalable and fault-tolerant coordination framework

GM 1

Join
GM 1

GM 1

Join
GL

GM 1

Join
GL

GM2
Join

GM 1

Watchdog

GM 1

Join
GL

GM2
Join

GM 1

Watchdog

Jo
in

G
M

2

GM3Watchdog

GM 1

Join
GL

GM2
Join

GM 1

Watchdog

Jo
in

G
M

2

GM3Watchdog GM4

Jo
in

G
M

3

Watchdog

GM 1

Join
GL

GM2
Join

GM 1

Watchdog

Jo
in

G
M

2

GM3Watchdog GM4

Jo
in

G
M

3

Watchdog

Join

GM n-1
GMn

Watchdog

Eugen Feller (Inria & University of Rennes 1) PhD Thesis Defense December 17, 2012 18 / 50



Group Manager Join
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Local Controller Join
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Hierarchy Reconstruction and Maintenance

Three kinds of failures
Local controller
Group manager
Group leader

Two steps to tolerate failures
1 Error detection
2 Recovery

Eugen Feller (Inria & University of Rennes 1) PhD Thesis Defense December 17, 2012 21 / 50



Local Controller Failure Handling

Local controller
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Local controller
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Local controller

GM
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Group Manager Failure Handling

GL

GM3 GMn
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Group Leader Failure Handling
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Hierarchy Management Evaluation

Scalability and self-healing
Number of LC servers managed by a GM
Number of GM servers managed by a GL
Cost of the heartbeat mechanisms
Cost of the self-healing mechanisms

Prototype implementation deployed on the Grid’5000 testbed

E. Feller, L. Rilling, and C. Morin. Snooze: A Scalable and Autonomic Virtual Machine Management Framework for Private Clouds. In the 12th

IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing (CCGrid), May 2012.
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Group Manager Scalability

How does the GM server CPU and memory utilization scale with
increasing number of LC servers?
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Cost of the Self-healing Mechanisms

What is the impact of the self-healing mechanisms on the application
performance?
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Outline

Self-configuring and self-healing VM management system

Self-optimizing integrated energy management approach
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Mechanisms and Algorithms for Energy Efficiency

How to favour idle times
Energy-efficient VM placement
Underload server detection and mitigation
Periodic VM consolidation

Server overload detection and mitigation
Power management

Automatic detection and power cycling of idle servers
Server wakeup when not enough resources are available
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Existing Energy Management Approaches in IaaS Clouds
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Underload and Overload Mechanism

How to deal with underload and overload situations?
Detection of server underload/overload situations
Relocation of VMs from underloaded/overloaded servers
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Underload and Overload Detection Approach

Local controllers periodically estimate their resource utilization based
on locally aggregated VM resource utilization data

Multi-dimensional
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Underload Relocation Algorithm

Triggered by the GM in the event of server underload

Key ideas
Move VMs from underloaded LC to LCs with enough spare capacity
All-or-nothing approach: Either migrate all VMs or none

Description
Sort VMs from underloaded LC in decreasing order of estimated utilization
Sort destination LCs in decreasing order of estimated utilization
Attempt to assign the VMs to the destination LCs starting from the first one
If some VM could not be assigned abort the algorithm
. . . otherwise perform live migrations
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Integrated Energy Management Evaluation

Evaluation with an elastic web service
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Deployed on 34 power-metered servers of the Grid’5000 testbed

E. Feller, C. Rohr, D. Margery, and C. Morin. Energy Management in IaaS Clouds: A Holistic Approach. In the 5th IEEE International

Conference on Cloud Computing (CLOUD), May 2012.
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Energy Saving Evaluation

Apache Benchmark Performance
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Limited performance degradation
Up to 67% energy savings for the evaluated application
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First Contribution Summary

Self-configuring and healing hierarchical architecture
Integrated energy management approach

VM placement and consolidation, server underload/overload mitigation,
power management
Four-dimensional aggregation-based underload/overload mitigation
First implementation of the Sercon algorithm in a real system

A robust prototype

Experimentally validated on the Grid’5000 testbed
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Second Contribution Presented

Virtual machine consolidation
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Existing VM Consolidation Algorithms

Approach Algorithms Worst-case
Complexity

Solution Parallelization

Greedy
Sercon Polynomial Close to

optimal
No

Mathematical
programming

Constraint pro-
gramming

Exponential Optimal Yes

Metaheuristics
Genetic algo-
rithms, Ant
Colony Opti-
mization

Polynomial Close to
optimal

Yes
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Mathematical
programming

Constraint pro-
gramming

Exponential Optimal Yes

Metaheuristics
Genetic algo-
rithms, Ant
Colony Opti-
mization

Polynomial Close to
optimal

Yes

First attempt to apply Ant Colony Optimization on VM consolidation
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Ant Colony Optimization

Ants work independently

Indirect communication using pheromone in the environment

Decisions are taken probabilistically

F

N

F

N

F
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Our Mapping from Paths to VMs and Servers

Design principles
Ants compute solutions
concurrently
Best solution is preserved
Pheromone on VM-server pairs
Probabilistic pair choice

Server 1

VM4

VM3

VM2

Server 2

VM1

Server 1

VM4

VM3

Probability (VM 1, Server 2) = 0.3
Probability (VM 2, Server 2) = 0.4

Probability (VM 3, Server 1) = 0.7
Probability (VM 4, Server 1) = 0.8

VM2

Server 2

VM1

Server 1

VM4

VM3

VM4

VM3

Probability (VM 1, Server 2) = 0.3
Probability (VM 2, Server 2) = 0.4

Probability (VM 3, Server 1) = 0.7
Probability (VM 4, Server 1) = 0.8

VM2

Server 2

VM1

Server 1

VM4

VM3

Idle

VM2

Server 2

VM1
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Algorithm components
Objective function
Probabilistic pair selection rule
Pair pheromone update rule
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VM Consolidation Scalability Issues

VM consolidation by nature is not scalable
Computing optimal solutions is exponential in time and space
Solution quality degrades at scale

Desirable properties
Scalability with increasing number of servers and VMs
High packing efficiency (PE)

PE :=
Number of released servers

Total number of servers
×100

Minimize the number of migrations
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Fully Decentralized VM Consolidation System

Servers maintain only a partial
system view

VM consolidation is applied within
these partial views

Partial views are
modified periodically and randomly
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Fully Decentralized VM Consolidation System Evaluation

Criteria
Scalability
Packing efficiency
Number of migrations

Experiments
Comparison of different VM consolidation algorithms

Sercon
V-MAN
Our ACO-based VM consolidation algorithm

Comparison with a centralized system

Evaluated by emulation

E. Feller, C. Morin, and A. Esnault. A Case for Fully Decentralized Dynamic VM Consolidation in Clouds. In the 4th IEEE International

Conference on Cloud Computing Technology and Science (CloudCom) (Best Paper Finalist), December 2012.
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Scalability

How does the system scale in terms of its packing efficiency with increasing
number of servers and VMs?
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Packing efficiency is not affected by the number of servers and VMs
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Comparison With a Centralized System Topology

What is the packing efficiency and number of migrations compared to a
centralized system?

Topology Algorithm Migrations Packing Efficiency (%)

Centralized
Sercon 1920 31.7

ACO Failed Failed

P2P
V-MAN 4189 32.0
ACO 4015 31.9

Sercon 1872 30.8

Experiments with 1008 servers and 6048 VMs

Packing efficiency and number of migrations close to a centralized system

Eugen Feller (Inria & University of Rennes 1) PhD Thesis Defense December 17, 2012 45 / 50



Comparison With a Centralized System Topology

What is the packing efficiency and number of migrations compared to a
centralized system?

Topology Algorithm Migrations Packing Efficiency (%)

Centralized
Sercon 1920 31.7

ACO Failed Failed

P2P
V-MAN 4189 32.0
ACO 4015 31.9

Sercon 1872 30.8

Experiments with 1008 servers and 6048 VMs

Packing efficiency and number of migrations close to a centralized system

Eugen Feller (Inria & University of Rennes 1) PhD Thesis Defense December 17, 2012 45 / 50



Second Contribution Summary

ACO-based VM consolidation algorithm

Fully decentralized VM consolidation system
Validated on the Grid’5000 experimentation testbed

Scalable with increasing numbers of servers and VMs
Packing efficiency close to a centralized system

Criteria Best algorithm 2nd 3rd
#Migrations Sercon ACO V-MAN

Packing efficiency V-MAN ACO Sercon
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Conclusion

Snooze: autonomic and energy-efficient VM management system
for large-scale IaaS clouds

Self-configuring and healing hierarchical architecture
Platform to evaluate VM management algorithms in a real system
Open-source software (http://snooze.inria.fr)

External users: IRIT Toulouse, EDF R&D, LIFL, LBNL, and Medion Seattle
Support: Inria technological action

Algorithms for energy efficiency
Evaluation of an integrated approach

First implementation of Sercon consolidation algorithm in a real system
Novel approach for underload/overload management
Up to 64% of energy savings

First ACO-based placement and consolidation algorithms
Viable approach in a fully decentralized system
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Short-term Perspectives

Further evaluate the Snooze system
Larger-scale experiments
Real-world workloads
Hierarchy energy overheads

Exploit Snooze to experimentally compare state of the art VM
management algorithms
Further increase the Snooze hierarchy autonomy and energy-efficiency

Re-balance the hierarchy dynamically
Remove local controller/group manager distinction
Power-cycle idle GMs
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Long-term Perspectives

Metrics for better capturing aggregated resource utilization data
Improving consolidation

Co-location and anti-colocation constraints
Consider VM resource demand complementarities
Data center network topology aware consolidation
Consolidation interval predictions

Thermal management
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Questions?

Thank you for your attention!
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Discussion

Backup slides
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Snooze Heartbeat Overhead
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Snooze Submission Time
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Energy Management Data Center
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Energy Management Parameters

Resource MIN, MID, MAX
CPU, 0.2, 0.9, 1

Memory 0.2, 0.9, 1
Network 0.2, 0.9, 1

Parameter Value
Packing density 0.9

Monitoring backlog 15
Resource estimators average
Consolidation interval 10 min

Policy Algorithm
Dispatching RoundRobin
Placement FirstFit
Overload Greedy

Underload Greedy
Consolidation Sercon

Parameter Value
Idle time threshold 2 min
Wakeup threshold 3 min

Power saving action shutdown
Shutdown driver system
Wakeup driver IPMI
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Bfire Events With Energy Savings Disabled
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Bfire Events With Energy Savings Enabled
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Snooze Events No Energy Savings Disabled
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Snooze Events With Energy Savings Enabled
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VM Placement Evaluation

 20

 40

 60

 80

 100

 120

 140

 160

 180

 100  200  300  400  500  600

 140

 210

 280

 350

 420

 490

 560

 630

 700

 770

 840
A

m
o
u
n
t 
o
f 
u
ti
liz

e
d
 h

o
s
ts

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

=
 k

W
h
)

Amount of VMs

Hosts - FFD
Hosts - ACO

Hosts - CPLEX
Energy - FFD
Energy - ACO

Energy - CPLEX

Eugen Feller (Inria & University of Rennes 1) PhD Thesis Defense December 17, 2012 60 / 50



Fully Decentralized VM Consolidation - Emulator Parameters

Parameter Value
Number of PMs and VMs 1008 (resp. 6048)

Experiment duration 360s
Consolidation interval 30s

Shuffling interval 10s
Neighbourhood size 16 PMs

Considered resources CPU, memory and net-
work

PM total capacity vector (48, 26, 20)
VM requested capacity vectors (0.2, 0.5, 0.1), (1, 1, 1), (2,

1, 1), (4, 2, 2), (8, 4, 4),
(16, 8, 4)
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Fully Decentralized VM Consolidation - Number of Active
Servers
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Fully Decentralized VM Consolidation - Number of
Migrations
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