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1 Introduction

Large-scale data centers enabling today’s cloud services are hosting a tremendous amount of servers and virtual
machines (VMs). Such data centers impose a number of important challenges on their cloud management systems.
First, cloud management systems must remain scalable with increasing numbers of servers and VMs. Second, with
the probability of server failures increasing at scale (e.g. see past Amazon outages), cloud management systems
must be highly available in order to enable continuous cloud service operation. Finally, at scale server administration
becomes a demanding task and thus cloud management systems must be designed to be easily configurable. Such
challenges call for scalable autonomic cloud management systems which are self-organizing and self-healing.

We focus on Infrastructure-as-a-Service (IaaS) clouds as they serve as the building block to enable most of the
available cloud services, ranging from scalable web deployments to parallel data processing. A number of IaaS cloud
management systems such as CloudStack, Nimbus, OpenStack, OpenNebula, VMware DRM and Eucalyptus have
been proposed in the past. However, the former five systems are based on centralized architectures thus limiting
their scalability. Indeed, in [5] the authors show that VMware DRM does not scale beyond 32 servers and 3000
VMs. Eucalyptus improves the scalability via a hierarchical architecture. However, it is not designed to be self-
organizing and self-healing. Moreover, all the aforementioned systems require active/passive servers to achieve
high availability thus wasting resources. Finally, the scalability and usability limitations of the open-source cloud
management systems have been identified in [7].

To tackle these limitations, we have proposed the Snooze [4] IaaS cloud management system. Unlike exist-
ing systems, for scalability, ease of configuration, and high availability, Snooze is based on a self-organizing and
self-healing hierarchical architecture of system services. No active/passive servers are required to achieve high
availability. For the challenge, we present an extensive scalability study of Snooze across over 500 servers of the
Grid’5000 experimentation testbed [1]. We evaluate the Snooze self-organizing and self-healing hierarchy with thou-
sands of system services. We also demonstrate the application deployment scalability across hundreds VMs on the
example of a Hadoop MapReduce application. To the best of our knowledge this is the first extensive evaluation of
the scalability of an autonomous cloud management system.

The remainder of this document is structured as follows. Section 2 briefly describe the Snooze cloud management
system. Section 3 presents the evaluation results. Finally, Section 4 concludes the document.

2 Snooze System Description
The architecture of the Snooze cloud management system is shown in Figure 1. It is composed of three layers:

computing, management, and client. At the computing layer each server is managed by a Local Controller (LC)
system service. The LC performs server and VM resource (i.e. CPU, memory, and network) utilization monitoring.
Moreover, it allows to control the VM life-cycle (e.g. start, shutdown). Each LC is assigned to a Group Manager
(GM) at the management layer. A GM receives VM resource utilization data from its assigned LCs and implements
algorithms to place VMs on the servers managed by the LCs. A Group Leader (GL) exists to manage the GMs. It is
elected among the GMs during the system boot phase and after a GL failure. The GL receives aggregated resource
utilization data from the GMs. It also accepts client VM submission requests and dispatches them among the GMs
based on a given VM dispatching policy. Finally, the GL is in charge of assigning joining LCs to the GMs based
on a given LC assignment policy. To enable system services failure detection and recovery, bi-directional heartbeat
protocols are implemented in all layers of the system. LCs and GMs send unicast heartbeats to the GMs and the
GL, respectively. This way LC and GM failures can be detected. GMs and the GL send multicast heartbeats in
order for the LCs and the GMs to detect GM and GL failures, respectively. In order for the clients to discover the
current GL, one or multiple system services, called Entry Points (EPs) exist which listen for GL heartbeats. While
the self-organization and self-healing mechanisms enable autonomous hierarchy construction and recovery, it is up to
the system administrator to decide on the initial number of LC, GM, and EP system services during the deployment.
System services can be dynamically added and removed at runtime.
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Figure 1: High-level system architecture Figure 2: Real-time Graphical User Interface

3 Snooze Scalability and Autonomy Evaluation
We have deployed Snooze across five geographically distributed sites of the Grid’5000 experimentation testbed.

The clusters were located in Rennes, Sophia, Nancy, Lyon and Toulouse. They were interconnected using 10 gigabit
Ethernet links. To create the illusion of all the servers belonging to the same cluster, a global Virtual LAN (VLAN)
was set up. Given the limited number of servers, to evaluate the scalability of the system we have deployed multiple
system services per server. We evaluated the system setup time, self-organization and self-healing protocols, system
services resource consumption, and the application deployment scalability.

3.1 System Setup Time
Evaluating the system setup time highlights the scalability of the deployment scripts. The system setup time is

composed of two steps: (1) deployment of a Debian base image; (2) Snooze package installation, configuration and
start. We used 538 servers to deploy Snooze with 1 EP, 40 GMs (including the GL) and 497 LCs. One system service
per server was used. The deployment of the Debian base image was done using the Kadeploy3 [6] tool and took
30 minutes for 538 servers. The Snooze system services installation, configuration, and start were supported by the
parallel remote execution tool called TakTuk [3] and took 15 minutes. This way 45 minutes were required to have a
running Snooze deployment. A Snooze deployment is considered as running when all the system services are started.

3.2 Scalability of the Self-organization Mechanisms
We evaluate the hierarchy construction time and demonstrate the upper bound on the number of GM and LC

system services Snooze can manage. We distinguish between three scenarios: (1) scalability of the GL; (2) scalability
of a GM; (3) scalability of the whole hierarchy. To evaluate the first scenario we have deployed up to 5000 GMs on
100 servers with each server hosting 50 GMs. A similar experiment was done for the second scenario with up to
5000 LCs with each server hosting 50 LCs. In both experiments we measured the number of GMs (resp. LCs) which
could join the system. In the third scenario we measured the time to construct the Snooze hierarchy with 1 GL, 1000
GMs, and 10000 LCs. LCs were assigned to GMs in a round robin fashion. We deployed 20 servers hosting 50 GM
each, and 200 servers hosting 50 LC each. A dedicated server was hosting the GL. Table 1 depicts the number of
system services which could successfully join the hierarchy in a given period of time. As it can be observed GMs
join faster than LCs. This can be explained by the fact that the LC join procedure requires to contact both, the GL
and the newly assigned GM. We observed that our prototype could handle up to approximately 4600 GMs and 4300
LCs per GL (resp. GM). Beyond this scale the GL and GM system services have experienced internal exceptions
and networking timeouts. Finally, when considering the scalability of the whole hierarchy, all of the 1000 GMs and
10000 LCs could successfully join the hierarchy in 20 minutes.

3.3 Scalability of the Self-healing Mechanisms
Our evaluation focuses on the hierarchy recovery time. We distinguish between two scenarios: (1) GL failure; (2)

GM failures. We first measured the GL election time and investigated the impact of the number of GMs on the GL
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hhhhhhhhhhhhhhhTime since start up
Topology 1 GL 1 GL - 1 GM 1 GL 1 GL

5K GMs 5K LCs 1K GMs - 3K LCs 1K GMs - 10K LCs
30 seconds 1485 GMs 509 LCs 980 GMs - 474 LCs -
1 minutes 3861 GMs 1043 LCs 1000 GMs - 767 LCs 979 GMs - 482 LCs
3 minutes 4656 GMs 2520 LCs 1000 GMs - 2134 LCs 983 GMs - 1492 LCs
10 minutes 4689 GMs 2633 LCs 1000 GMs - 2657 LCs 1000 GMs - 7436 LCs
15 minutes 4645 GMs 4283 LCs 1000 GMs - 3000 LCs 1000 GMs - 9593 LCs
20 minutes 4629 GMs 4300 LCs 1000 GMs - 3000 LCs 1000 GMs - 10000 LCs

Table 1: System services join time

election time. Snooze was deployed with up to 1000 GMs on 20 servers each hosting 50 GMs and a GL failure was
injected. The results show that the GL election time is about 10 seconds and does not depend on the number of GMs
(see [4] for more details on GL election). GMs rejoin the new GL in less than 2 minutes (see Figure 3). To evaluate
the hierarchy recovery time in the event of GM failures we deployed Snooze with 1 GL, 1000 GMs, and 3000 LCs.
We used 20 and 150 servers with each of them hosting 50 GMs and 20 LCs, respectively. Failures were injected by
terminating the GM services on up to 19 servers. We then measured the number of LCs on the last server hosting
GM services. Figure 4 depicts the GM failures as seen by the GL and the number of LCs rejoining the remaining
GMs. We observe that all the LCs rejoin the hierarchy quickly even when 95% of the GMs become unreachable in a
short period of time. This result shows that Snooze is able to tolerate a large number of simultaneous GM failures.
Indeed, after 20 minutes all LCs have rejoined the hierarchy.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0  20  40  60  80  100  120

N
u
m

b
e
r 

o
f 
s
u
c
c
e
s
s
fu

ll 
jo

in
s

Time (s)

GMs rejoin

Figure 3: GMs rejoining after a GL failure
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Figure 4: GMs failure and LCs rejoin over the time

3.4 System Services Resource Consumption
We evaluate the GM resource (CPU, memory, network) consumption as it gives an upper bound on the number

of manageable LCs and VMs. The evaluation focuses on the resource consumption with increasing number of LCs
and VMs. To evaluate the former aspect, we increased the number of LCs up to 1000 and measured the resource
consumption at the GM server. We used 20 servers with each of them hosting 50 LCs. Figure 5 shows the GM
resource consumption when increasing the number of LCs incrementally (1 LC per second) with 1 GL and 1 GM in
the system. As it can be observed the GM network received traffic is proportional to the number of LCs. The send
traffic remains low since it does not depend on the number of LCs. Only small spikes can be observed during the LC
join period. Ultimately, only a fixed amount of aggregated resource consumption data along with heartbeat messages
is sent every 3 seconds to the GL. No significant variation in CPU consumption is visible. Memory usage increases
to about 220 MB. We believe that the memory usage increase is related to the memory and thread management of the
Java Virtual Machine (JVM). The same kind of experiments were performed to evaluate the scalability of the GL in
terms of the number of GMs it can manage. Similar observations were made on the GL when increasing the number
of GMs. To evaluate the resource consumption on the GM with an increasing number of VMs, we have deployed
Snooze with 1 GL, 1 GM and 20 LCs, each on a dedicated server. VMs were configured with 1 VCORE, 256 MB
of RAM, and 5 GB of disk space. We used QCOW2 disk images which were hosted on a Network File System
(NFS). We started the VMs in groups of 10 incrementally up to 1000 (see Figure 6). Each LC hosted approximately
50 VMs. As it can be observed the GM received traffic increases proportionally with the numbers of VMs, while
the send traffic remains low. The CPU utilization remains under 1%. The memory usage increases up to 500 MB.
Indeed, currently monitoring data is stored in-memory using a per VM ring buffer. Thus after some time oldest
monitoring values are overwritten resulting in a flat memory usage curve for a fixed number of VMs.
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Figure 5: Resource consumption on the GM while increasing the number of LCs

 0

 10

 20

 30

 40

 50

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000
 0

 2

 4

 6

 8

 10

G
M

 r
e

c
v
d

  
(=

 K
B

/s
e

c
)

G
M

 s
e

n
t 

(=
 K

B
/s

e
c
)

Time (s)

VMs submissions start VMs submissions finish

GM recvd GM sent

 0

 1

 2

 3

 4

 5

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000
 0

 500

 1000

C
P

U
 u

ti
liz

a
ti
o
n
 (

=
 %

)

M
e
m

o
ry

 u
s
a
g
e
 (

=
 M

B
)

Time (s)

VMs submissions start VMs submissions finish

CPU usage Memory usage

Figure 6: Resource consumption on the GM while increasing the number of VMs

3.5 Application Deployment Scalability: the Hadoop MapReduce Case
A key application of IaaS clouds is to enable Big Data analysis. Our evaluation focuses on three aspects: (1)

Hadoop VM submission; (2) Hadoop MapReduce configuration; (3) Hadoop MapReduce application execution.
Hadoop VM submission captures the time to propagate VM images to the servers and the time for the VMs to
become accessible. We deployed Snooze with 1 EP, 3 GMs and 497 LCs (i.e. 3476 cores, 10 TB of RAM) each on
a dedicated server. We then deployed 1000 VMs (3 VCORES, 8 GB of RAM and 50 GB of disk space) in five steps
of 200 VMs. We used QCOW2 disk images which were propagated to the LC servers using SCP Tsunami [2]. We
used Hadoop version 1.0.4. MapReduce was configured with two maps and one reduce slots per VM. HDFS block
size was set to 128 MB. The VM submission took 30 minutes. At the end 917 out of 1000 VMs were submitted
due to the heterogeneity of the servers. Hadoop MapReduce was configured on the 917 VMs using our scalable
Hadoop configuration script. The configuration took 10 minutes. Ultimately, we executed the TeraGen and TeraSort
benchmarks to measure the execution time. It took 3 minutes and 10.2 minutes for TeraGen to generate 100 GB and 1
TB of data, respectively. TeraSort required 9.5 minutes and 84 minutes to sort 100 GB and 1 TB of data, respectively.
4 Conclusions

We have experimentally validated the Snooze scalability. The results show that the resource consumption of the
Snooze system services is bounded both during the hierarchy construction and system operation. We also show that
Snooze prototype implementation is robust enough to manage thousands of servers and hundreds of VMs. Moreover,
its autonomic behavior allows to achieve high availability in the presence of a large number of simultaneous system
services failures. Indeed, as long as at least two GMs remain operational the system remains alive. Finally, Snooze
has been successfully used to run data-intensive Hadoop MapReduce applications. Snooze software is available
in open-source at http://snooze.inria.fr. It can be used either as IaaS cloud management system or a
research testbed for VM management algorithms. In the demonstration we will show the Snooze self-organization
and self-healing features in real-time using the GUI (see Figure 2) while executing a Hadoop MapReduce application.
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